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A technically robust
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Some assumptions

* ‘Physically realistic’ approach (no BAU available)



ARBOR
BRITAMN

Global average surface temparature

Where we’re heading today

bove pre-industrial levels (°c)

Increasea

4°C

4 LA A E B R R EERE AR R A EREE R R AR E R R R R R R EEE R AR R E R E R EEEREREEEEEREEEEREEZENRZE BEEEEEEJREEEREJREEJEE B BB NBEJ

Business as usual

With current
emissions pledges

28

2...‘OI......I..'....-...I.....‘I...........I.......l.'... L L L

o,
1.5°C Low emissions, with

LU B R L R B B L L B R L R L LR L B L L B B R

net carbon capture
post 2050

Global sudden stop to
emissions in 2016

Historical data

1900 1950 2000 2050 2100

Figure 2.4: Temperature changes expected under different emissions scenarios. Adapted from World Bank (2012).
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Some assumptions

* ‘Physically realistic’ approach (no BAU available)
— We can’t change physics...

* Net zero emissions, basically ASAP
— All greenhouse gases
— Across all sectors — agriculture, land-use, industry...

— Big changes will be necessary.
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Some scenario aims

« Keep the lights on and keep everyone warm
(make sure supply meets demand at all times).

« Make sure we all eat enough, and eat well.

« Keep a decent standard of living, with the
benefits of a modern society.

« Support biodiversity — use less land than we do
currently (at home and abroad).
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Some rules

* 100% renewable energy

— NoO nuclear
— No CCS

« UK resources only

* Technology available now
— No relying on ‘silver bullets’
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Figure 3.2: UK primary energy supply, delivered fuel mix and energy demand in 2010 (DECC, 2012a; DECC, 2012b).
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Figure 3.36: Primary energy supply, delivered fuel mix, and final energy demand for the UK in our scenario,

relative to 2010.
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UK Energy
ZCB

* Much reduced annual energy demand
— Improved efficiency and behaviour change
* Electrification of systems

* 100% renewable (decarbonised) supply

Not a new idea...
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Figure 3.2: UK primary energy supply, delivered fuel mix and energy demand in 2010 (DECC, 2012a; DECC, 2012b).
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Figure 3.4: Total annual energy demand by sector in the UK in 2010 (DECC, 2012) and in our scenario.
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Figure 3.10: The change in energy demand for heating and hot water; cooking, lighting and appliances;
and industry between 2010 (DECC, 2012) and our scenario: by amount and type of fuel.
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Figure 3.8: The amount of ‘stuff’ produced by UK industry (output), the energy used per unit of output (energy intensity),
and the total UK industrial energy use for 2007 (representing pre-recession levels), 2010 (DECC, 2012) and in our scenario.
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Figure 3.10: The change in energy demand for heating and hot water; cooking, lighting and appliances;
and industry between 2010 (DECC, 2012) and our scenario: by amount and type of fuel.
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Figure 3.14: Change in total energy demand for transport
and the types of fuel required in 2010 (DECC, 2012) and our
scenario.
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Figure 3.12: Average distance travelled per person per year by various modes of transport in 2010 (DfT, 2012) and our scenario.
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Figure 3.13: Reduction in energy demand for personal and commercial (freight) transport in our scenario (with initial figures
from DECC, 2012).
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Figure 3.5: Annual energy use by fuel type in the UK in 2010 (DECC, 2012) and in our scenario.
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Figure 3.36: Primary energy supply, delivered fuel mix, and final energy demand for the UK in our scenario,
relative to 2010.
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Figure 3.36: Primary energy supply, delivered fuel mix, and final energy demand for the UK in our scenario,
relative to 2010.
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I High wind speeds
Low wind speeds
[ Areanot included

Figure 3.17: European wind speeds at 50 meters above ground level, ranging from the highest (dark blue), to the lowest (light
blue). This represents sheltered and open areas, on hills and ridges, coastal areas, and in the open sea, though the highest
wind speed and lowest wind speed will be different in each topographical area. Adapted from Troen and Petersen (1989).
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B R I TA ;N Figure 3.18: Energy flows in our scenario — from supply to demand. Numbers used here are rounded up or down to the
nearest TWh and so inputs and outputs may not add up exactly.
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Comparison to energy production of estimated
max capacity of renewable resource in the UK

Estimated
max. 2CB
energy energy| % of max.
production production energy
(TWhlyr) | Reference (TWh/yr) | production
E:a: stream 1;2 42 28
"-J‘:r' ==nJe 40 Offshore Valuation o5 63
ave _ Group (2010)
Offshore ﬁxec! wmq 400 530 28
Offshore floating wind 1500
Onshore wind 60 | Péyry (2011) o1 85
Hydro 8 | Arup (2011) 8 100
Solar PV 140 58 41
;Iar — 5] DECC (2010) 2050 s ~
ofar therma pathways, level 4
Geothermal electric 35 24 69
Geothermal heat 7 15
Ambient heat N/A 105
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(In fact, globally, we have enough resource
for everyone...)

Cleaner Fairer Future

Caonsimption

“ In the end physical reality — that's
‘reality, reality’— outstrips political
reality”

L] What good is it to save the planet
if humanity suffers?”

Rex Tillerson,

ExxonMobil CEQ Bill McKibben, environmentalist

UK TA gA}Tﬁ http://www.twoenergyfutures.org
NETWORK l?l
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But...
Total
\ electricity
Is this a reliable B 738
energy system?

(or: Can we ‘keep
the lights on?’)

Hydro power, solar PV
and geothermal electricity
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German Department of the Environment)
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ZCB hourly energy model
Parameter ZCB hourly energy model
Spatal system | UK (not Britainl)
Lngﬁazgi?:sbeynnd MNone (island system)

Treat UK grid as a single

Spatial resolution point (“copper plate UK?)

Temporal
resolution

Ten years of data (2002 — 2011) = 87,648 hours:

« Hourly offshore and onshore wind speeds, solar radiation, wave
heights, (NASA, Met Office, BADS)

« Hourly electricity consumption (UK National Grid)

« Dalily weighted average temperatures (UK National Grid)

1 hour

Installed capacity and demand from ZCB scenario
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ZCB hourly energy model
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Britain heading for hottest, driest spring since records
began

Britain is enjoying its hottest, driest spring since records began with temperatures of up
to 75F (24C) predicted this week and a sunny Bank Holiday weekend ahead.

f=j Print this article

&% share | 47

n Facebook | 17

£ Twitter | 30
B4 Email
B Linkeain | 0
811 o
Weather
i i : b B ' News » UK News »
If the fine weather holds and Britain gets a further 1156.4 hours, it will beat a record that has Andy Bloxham »

stood since 1948 Phoio Rui Vieira/PA

Related Partners
By Andy Bloxham

2:13PM BST 22 May 2011

- Find the cheapest gas
_ | W Follow | 863 followers | and electricity prices
& : ‘ near you
Figures from the Met Office show the average temperature across the In Weather

UK since the start of March is just over 48 6F (9.2C) — the warmest since

records began in 1910. l- ! .|
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began

Britain is enjoying its hottest, driest spring si By Dailyrecord. co.uk| 23 May 2011 06:40
to 75F (24C) predicted this week and a sunn;

. !Summer? What Summer? Scotland battered
i by 100mph winds

;ﬁ‘ 4 Travellers urged to keep updated as storm sweeps across the country.

If the fine weather holds and Britain gets a further 116.4 hc'urs, it -
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Worst hour: 21 December 2010, 8 am (Tuesday)



\‘"‘( antre for Allernative Technol iogy

l“‘ Canoltan v Dec hnolsg Amgen

ARBON
BRITAAN

NEWS ScIENCE & ENVIRONMENT

Home World UK England N.lreland Scotiand Wales Business Politics Health Education Schmnl

5 January 2011 Last updated at 17:20
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Last December UK's coldest for 100 years

By Richard Black

Last month was the coldest December
documented for the UK since nationwide
records began 100 years ago, the Met
Office has confirmed.

For central England, it was the second coldest
December since 1659.

However, the first analysis released of global
temperatures shows 2010 was one of the
warmest years on record.

The UK's harsh weather was caused by
anomalously high air pressure that blocked mild
westerly winds and brought cold air south from
the Arctic.

Envircnment correspondent, BBC News

Crlsp wmtry weather turned usuallyﬂund attractlons
into static features

RPalatard Stariace



\"& Cantre for Allernative Technology

4“V Canoltan y Dechnolsg Amgen

ARDBUN
BRITAXN

NEWVS SCIENCE & ENVIRONMENT (very difficult to

Home World UK England N.lreland Scotiand Wales Business Politics Health Education BE=iSiitUl f-n d ne S

5 January 2011 Last updated at 17:20 l] Os=s .
stories about a
Last December UK's coldest for 100 years ‘not very

By Richard Black

Environment correspondent, BBC E’he Gﬂegl'll]]h Win dya d ay. . )

Home News World Sport Finance Comment Culture Travel Life Women Fashi

Last month was the coldest December
documented for the UK since nationwide
records began 100 years ago, the Met HOME » TOPICS » WEATHER

Office has confirmed. Is th€ EU Stﬁaling UK Wlnd'p (and ltS SUH COld)

The thermometer plunged to a new winter low overnight as temperatures reached
However, the first analysis released of global -22.3C (-8.1F) in the Scottish highlands - almost as cold as the South Pole.
temperatures shows 2010 was one of the
warmest years on record.

Weather | Weather Forecast ' Aundi quatiro Weather Watch

For central England, it was the second coldest
December since 1659.

=y Print this article

ﬁ Share 23

The UK's harsh weather was caused by
anomalously high air pressure that blocked mild
westerly winds and brought cold air south from
the Arctic.

n Facebook | 22
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% of time over 10yr period
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Surplus 83% of time

% of time over 10yr period
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Electricity surplus (GW)

Electricity shortfall (GW)

100

50

-100

Surplus 83% of time
» Back-up process inefficient
» Other demands for gas/liquid fuel
« Shutdown time?
% of time over 10yr period
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Electricity surplus (GW)

Electricity shortfall (GW)
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But this Is what concerns us

% of time over 10yr period

I T T T 1

20% 40% 60% 80% 100%

shortfall > 35GW

for 1% of hours




"' e lor Allernative Technology

l“‘ an H any Dechnolsg A '.
B R ITAMN
Short-term fluctuations
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Short-term fluctuations

« Large hour-to-hour variations
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Short-term fluctuations

« Large hour-to-hour variation

« Demand Side Management (DSM) can help
e.g. “smart charging” of electric cars
(~25GWh)

« Pumped hydro storage and heat storage can
provide short-term storage (~25GWh; ~100GWh)
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Electricity surplus (GW)

Electricity shortfall (GW)
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Longer-term fluctuations
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 Significant longer-term variation between months
and years

 We need:
* |deally many TWh of storage required
* Flexible and quickly dispatchable back-up



AR B U N
BRITASN
Longer-term fluctuations

Significant longer-term variation between months
and years

We need:

* |deally many TWh of storage required

* Flexible and quickly dispatchable back-up

« Gas allows storage of large quantities of energy
« Gas turbines allow flexible dispatch
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Longer-term fluctuations

Significant longer-term variation between months
and years

We need:

* |deally many TWh of storage required

* Flexible and quickly dispatchable back-up

« Gas allows storage of large quantities of energy
« Gas turbines allow flexible dispatch

— Must be carbon neutral
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Hydrogen can easily be created from renewable
electricity (electrolysis)

But methane Is easier to store and we have vast
existing infrastructure

The Sabatier reaction = methanation (upgrading)
of hydrogen CO, + 4H, — CH, + 2H,0O
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Synthetic gas

Hydrogen can easily be created from renewable
electricity (electrolysis)

But methane Is easier to store and we have vast
existing infrastructure

The Sabatier reaction = methanation (upgrading)
of hydrogen CO, + 4H, — CH, + 2H,0O

Less biomass required and
use of surplus electricity.

—
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B R I TA ;N Figure 3.18: Energy flows in our scenario — from supply to demand. Numbers used here are rounded up or down to the
nearest TWh and so inputs and outputs may not add up exactly.
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Figure 3.20: From surplus electricity and biomass to synthetic fuels for industry, transport and energy system back up.
Losses are not shown in this figure.
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(This Is
another
story...)

Unmanaged/conserved
[ Mixed grasses
I Unharvested forest
[ Harvested forest
| Foodforus

Food for livestock
" Grassland for livestock

I Urban

Land use today

Unmanaged/conserved
" Restored peatland
I Unharvested forest
" Harvested forest
I short rotation forestry (SRF)
I short rotation coppice (SRC)
[ Mixed grasses
" Foodforus

Food for livestock
" Grassland for livestock

I urban

Land usein ZCB
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Synthetic gas store
* 60,000GWh storage = ~ 2 x UK today

« ~45GW back-up turbine capacity = ~ UK today
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Lessons in ‘managing variability’

What doesn‘t really help at all
« Spreading renewable resources about
« Using lots of different resources

What helps a bit:
« Demand side management (“smart charging®)
« Short-term storage (pumped hydro and heat)

What we really need:

« Large flexible, quickly despatchable storage
* (not ‘baseload’ energy)
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Still more to learn...
* Optimisation
« Sensitivity analysis — simulate future weather?

* Analysis of extreme shortages
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However, ZCB does show that

 We can provide a reliable, zero carbon
energy system.

— Using our own resources.
— With 100% renewable energy.
— Without nuclear power or fossil fuels.
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However, ZCB does show that

 We can provide a reliable, zero carbon
energy system.

— Using our own resources.
— With 100% renewable energy.
— Without nuclear power or fossil fuels.

We do have to make some big changes!
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(“Dear Santa...”
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To demonstrate that integrated and
technically feasible solutions do exist.
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The aims of the ZCB project

To demonstrate that integrated and
technically feasible solutions do exist.

To support and inspire the action needed
to achieve a positive zero carbon future.
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The aims of the ZCB project

To demonstrate that integrated and
technically feasible solutions do exist.

o support and inspire the action needed
to achieve a positive zero carbon future.

— To help us see what this kind
of future looks like, and what it
would mean to our lives
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We have the technology to power ourselves

with 100% renewable energy, to feed ourselves

sustainably and to leave a safe and habitable

;\ climate for our children and future generations.
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\"'A Centre for Alternative Technology
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www.cat.org.uk | @centre_alt_tech
www.zerocarbonbritain.org | #2CB




