
A Call for Greater Transparency in 
Energy Modeling and Analysis 

Joe DeCarolis 

Assistant Professor 

Dept of Civil, Construction, and Environmental Engineering 

NC State University 

jdecarolis@ncsu.edu; @jfdecarolis 
1 

Les Houches, France 
7 February 2014 



Talk outline 

Introduction to energy economy optimization models 

 

Problems with the status quo; recommendations to fix 

 

Introduction to Tools for Energy Model Optimization 
and Analysis (Temoa) 
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Driving questions 

How does the world balance the costs of greenhouse gas mitigation 
in the near-term versus long-term?  

 
What are the anticipated economic and environmental impacts 

associated with future environmental policies and energy 
technology deployments?  

 
How do decision makers craft energy planning strategies that are 

robust to future uncertainties?  
 
How do decision makers incorporate broader environmental 

sustainability considerations — beyond simply limits to 
greenhouse gas emissions — into their strategies? 
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Energy-economy optimization (EEO) models 

Large uncertainties combined with a mix of technical, economic, and moral 
considerations preclude definitive answers to the questions above.  

 

Model-based analysis can deliver crucial insight that informs key decisions. 

 

Energy-economy optimization (EEO) models refer to partial or general 
equilibrium models that minimize cost or maximize utility by, at least in 
part, optimizing the energy system over multiple decades 

• Self-consistent framework for evaluation 

• Explore how effects may propagate through a system 

• Expansive system boundaries and multi-decadal timescales 
 

What can we usefully conclude from modeling exercises 
where uncertainty is rigorously quantified?  
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Technology explicit modeling 
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Capital Cost   ($M/PJ/yr) 
Fixed O&M    ($M/PJ) 
Variable O&M ($M/PJ) 
Capacity factor  
Efficiency 
Emissions coefficient (kton/PJ) 

Objective function: minimize present cost of energy supply over a 
defined time horizon 
Decision variables: activity (PJ) and capacity (PJ/yr) for each technology 
 



High Visibility Model-Based Analyses 

IPCC Special Report on Emissions Scenarios 
http://www.ipcc.ch/ipccreports/sres/emission/index.htm 

IEA Energy Technology Perspectives 
http://www.iea.org/techno/etp/index.asp 

Annual Energy Outlook 
http://www.eia.gov/forecasts/aeo/er/ 

EPA Legislative Analyses 
http://epa.gov/climatechange/economics/economicanalyses.html 
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Problems with the status quo 
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Inability to validate model 
results 

Four conditions for validatable models according to Hodges 
and Dewar (1992) : 

• It must be possible to observe and measure the situation 
being modeled. 

• The situation being modeled must exhibit a constancy of 
structure in time. 

• The situation being modeled must exhibit constancy across 
variations in conditions not specified in the model. 

• It must be possible to collect ample data with which to 
make predictive tests of the model. 
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Uses of unvalidatable models 

According to Hodges and Dewar (1992): 

• As a bookkeeping device, to condense masses of data or 
to provide a means or incentive to improve data quality; 

• As an aid in selling an idea of which the model is but an 
illustration; 

• As an aid in communication, e.g., in teaching or in 
operating organizations 

• As a vehicle to make comparisons 

• As an aid in thinking and hypothesizing 

To which I add: 

• As a tool to identify robust outcomes across a range of 
tested conditions 
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Inability to validate leads 
to increasing model 
complexity 

 

The conventional approach to dealing with structural 
uncertainty is to build larger and more complex models to 
account for additional dynamic processes. 

 

Little to guide the modeler and reign in efforts that do not 
improve model performance  

 

Higher complexity makes it harder to address the parameter 
uncertainty through sensitivity and uncertainty analysis 
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Past projections are generally dismal 

Source: Craig et al. (2002). “What Can History Teach Us? A 
Retrospective Examination of Long-Term Energy Forecasts 
for the United States.” Ann. Rev. Energy Environ. 27:83-118. 

U.S. Atomic Energy Commission 
forecast from 1962 

Source: Morgan G, Keith D. (2008). “Improving the way we think 
about projecting future energy use and emissions of carbon 
dioxide.” Climatic Change. 90: 189-215. 
 



Lack of openness 

Most EEO models and datasets remain closed source. Why? 

• protection of intellectual property 

• fear of misuse; inability to control or limit model analyses 

• implicit commitment to provide support to users 

• overhead associated with maintenance 

• unease about subjecting code and data to public scrutiny 
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Inability to verify model  
results 

With a few exceptions,  

energy-economy models are not open source 

 

Descriptive detail provided in model documentation and peer-
reviewed journals is insufficient to reproduce a specific set of 
published results 

 

Reproducibility of results is fundamental to science 

 

Replication and verification of large scientific models can’t be 
achieved without source code and input data 
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Why does replication matter? 

The development of repeatable experiments laid the 
foundation for reason-based scientific inquiry by allowing 
independent verification of non-intuitive empirical results 

 

The purpose of describing experiments was to convince 
skeptics that a counter-intuitive result could be obtained by 
following a prescribed procedure. 

 

The utility of a repeatability criterion is common to all forms of 
reason-based inquiry 

 

Particularly relevant to energy- and climate-related policy 
analysis that could involve the transfer of huge sums of wealth. 
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Uncertainty analysis is  
difficult 

A common result is false precision 

    E.g., EPA analysis of S.2191 (Lieberman-Warner), GDP growth 

predictions to 0.01%! 

 

Large, complex models tuned to look at a few scenarios by necessity 

 

Scenario analysis overused 

 

Without subjective probabilities p(X|e), scenarios of little value to 
decision makers 
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Cognitive heuristics play a role and can lead to misinterpretation of 
results.  

 

Availability heuristic:  

Probabilities of a future event or outcome assessed on the basis of 
how easily an individual can remember or imagine examples 

 

Anchoring and adjustment: 

People start with an initial value or “anchor” and then modify their 
judgment as they consider factors relevant to the specifics  often 
insufficient adjustment 

 

 A few highly detailed scenarios can create cognitively compelling 
storylines. 

 
 

Problems with scenario analysis 

Drawn from: Morgan G, Keith D. Improving the way we think about projecting future 
energy use and emissions of carbon dioxide. Climatic Change 2008; 90; 189-215. 
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Example of the availability heuristic 
Drawn from Slovic et al. (1976) 

Tom is of high intelligence, although lacking in 
true creativity. He has a need for order and 
clarity, and for neat and tidy systems in which 
every detail finds its appropriate place. His 
writing is rather dull and mechanical, 
occasionally enlivened by somewhat corny puns 
and by flashes of imagination of the scientific 
type. He has a strong drive for competence. He 
seems to have little feel and little sympathy for 
other people and does not enjoy interacting 
with others. 
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Which is most probable scenario for Tom? 

1. Tom will select journalism as his college 
major. 

2. Tom will select journalism as his college 
major but become unhappy with his choice 

3. Tom will select journalism as his college 
major but become unhappy with his choice 
and switch to engineering 
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So what should we do? 
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Recommendations  drawn from DeCarolis JF, Hunter K, Sreepathi S (2012). “The case 
for repeatable analysis with energy economy optimization models”, Energy 
Economics, 34: 1845-1853.         



Recommendation 1: Make source code publicly 
accessible 

 

• Ince et al. (2012): even unambiguous descriptions of computer 
code are no guarantee of reproducibility. 

• Use software configuration management to track and control 
changes to software 

• Utilize revision control to log changes to the codebase 

 
 

Recommendations  
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Recommendation 2: Make model data publicly 
accessible 

 

• Models cannot be replicated without access to the complete 
input data set 

• Unlike source code, model input data updated frequently 

• Archive input data associated with each published analysis 

• Publish data in a web-accessible, free, and archived repository 

 
 

Recommendations  
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Recommendation 3: Make transparency a design goal 

 

• Documentation required to interpret model source code and 
data 

• Documentation can come in different forms: 
– A standalone, comprehensive document 

– Comments embedded in the source code 

– Well-designed code with descriptive variable names that provide self-
evident meaning 

 
 

Recommendations  

22 
Drawn from DeCarolis et al. (2012) 
 



Recommendation 4: Utilize free software tools 

 

• Use cost-free (gratis) software to minimize the barriers to entry 

• Maintain a baseline model that is executable with free tools 
 

 
 

Recommendations  
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Recommendation 5: Develop test systems for 
verification exercises 

 

• Create a set of publicly available data files that represent test 
systems for verification exercises 

• Allows modelers to debug changes to model formulation, assess 
computational performance, and provide a consistent 
evaluation mechanism for inter-model comparison 

• Precedent exists: IEEE Reliability Test System (RTS) to evaluate 
techniques for assessing electric load reliability 
 

 

 
 

Recommendations  
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Recommendation 6: Work toward interoperability of 
models 

 

• Improve inter-model comparison by ensuring data consistency 
across models 

• Reduce duplication and error in building datasets 

• Use a relational database management system (RDMS): data 
can be queried and mapped efficiently to a project's native 
input format 

 
 

 

 
 

Recommendations  

25 
Drawn from DeCarolis et al. (2012) 
 



Recommendation 7:  

Build models that are as simple as possible to answer the 
question at hand, and then rigorously exercise it with 
uncertainty analysis 

 

 

 
 

Recommendations  
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What we did. 
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Tools for Energy Model Optimization and Analysis 

Temoa also means “to seek something” in the Nahuatl (Aztec) language: 

Taken from: An analytical dictionary of Nahuatl  
by Frances E. Karttunen 
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Temoa 



Temoa goals and approach 

Goal: Create an open source, technology explicit EEO model 

Our Approach: 
• Public accessible  source code and data 
• No commercial software dependencies 
• Data and code stored in a web accessible electronic repository 
• A version control system 
• Programming environment with links to linear, mixed integer, 

and non-linear solvers 
• Built-in capability for sensitivity and uncertainty analysis 
• Utilize multi-core and compute cluster environments 
• Input and output data managed directly with a relational DB* 
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Technology explicit modeling 
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Capital Cost   ($M/PJ/yr) 
Fixed O&M    ($M/PJ) 
Variable O&M ($M/PJ) 
Capacity factor  
Efficiency 
Emissions coefficient (kton/PJ) 

Objective function: minimize present cost of energy supply over a 
defined time horizon 
Decision variables: activity (PJ) and capacity (PJ/yr) for each technology 
 

‘Utopia’    (18 technologies included) 



TEMOA Model Features 

A technology explicit model with perfect foresight, similar 
to the TIMES model generator. 

 

• Flexible time slicing by season and time-of-day 

• Variable length model time periods 

• Technology vintaging 

• Separate technology loan periods and lifetimes 

• Global and technology-specific discount rates 
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‘Utopia’ verification exercise 
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Approach to uncertainty analysis. 
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Approach to uncertainty analysis 

Use the following techniques in series: 
 

Sensitivity analysis and Monte Carlo simulation  

→ Determine key sensitivities 

 

Multi-stage stochastic optimization 

→ Develop a hedging strategy 

 

Explore near-optimal, feasible region  

(Modeling-to-Generate-Alternatives) 

→ Test robustness of hedging strategy 
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Stochastic Optimization 

Decision-makers need to make choices before uncertainty is 
resolved → requires an “act then learn” approach 
 

Need to make short-term choices that hedge against future risk 
 
→ Sequential decision-making process that allows recourse 
 
Stochastic optimization 
• Build a scenario tree 
• Assign probabilities to future outcomes 
• Optimize over all possibilities 
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Simple example of stochastic optimization 

Suppose we have two technologies, A and B. Let x and y represent 
the installed capacity in Stages 1 and 2, respectively. 
 

 

t1 t2 

s1 

s2 

Stage 1 Decision Variables: 
 
 
Stage 2 Decision Variables: 
 

 

,
A B

x x

1 1

2 2

, ,

, ,

,

,

A s B s

A s B s

y y

y y

1
p

2
p

1

M in im iz e : c

N

T T

s s s

s

x p d y



  

S u b je c t  T o : 

     1, . . . ,

0

0                   1, . . . ,

s s s s

s

A x b

T x W y h fo r s N

x

y fo r s N



  



 

Scenario 1: s1 

Scenario 2: s2 



What about structural uncertainty? 
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Consider an optimization 
model that only includes 
Objective 1 and leaves 
Objective 2 unmodeled.  
The true optimum is 
within the feasible, 
suboptimal region of the 
model’s solution space. 

 

Viable alterative solutions 
exist within the model’s 
feasible region. 

Example adopted from Brill et al. (1990). 

Objective 1 

O
b

je
ct
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e 

2
 

Non-inferior frontier 



Modeling to Generate Alternatives 
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Still haven’t dealt with structural uncertainty in the model 
 

Need a method to explore an optimization model’s feasible 
region → “Modeling to Generate Alternatives”† 

 

MGA generates alternative solutions that are maximally different 
in decision space but perform well with respect to modeled 
objectives 
 

The resultant MGA solutions provide modelers and decision-
makers with a set of alternatives for further evaluation 

 

 

†Brill (1979), Brill et al. (1982), Brill et al. (1990) 



Hop-Skip-Jump (HSJ) MGA 
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Steps: 

1. Obtain an initial optimal solution by any method 

2. Add a user-specified amount of slack to the value of the 
objective function 

3. Encode the adjusted objection function value as an 
additional upper bound constraint 

4. Formulate a new objective function that minimizes the 
decision variables that appeared in the previous solutions 

5. Iterate the re-formulated optimization 

6. Terminate the MGA procedure when no significant changes 
to decision variables are observed in the solutions 

Brill et al. (1982) 



Sample Result 

Drawn from DeCarolis (2011) 40 



Conclusions 

Most EEO models and model-based analyses are opaque to 
external parties 

 
A prerequisite for making energy scenarios more scientific is 
open access to model source code and data  
 enables repeatability 

 

Rigorous uncertainty analysis is necessary to develop useful 
and actionable insight for policy 

 

Challenge for modeling community to archive model, data 
and results in a systematic and transparent fashion. 
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