

Redesigning the Economy to Achieve Carbon Transition

Growth engines and productivity Production functions

Cédric Ringenbach - Les Houches 2014 cedric.ringenbach@theshiftproject.org Why a production function for GDP ?

GDP cannot be decided politically

It depends on production factors

=> It cannot be an exogenous variable

Some production functions

- Solow-Swan :
- + energy
- …or useful work :
- + matter :
- + creativity :

Y = Y (K, AL)Y = Y (K, L, E)K : Y = Y (K, L, U)Y = Y (K, L, E, M)Y = Y (K, L, E, C)

KLE production function

Cobb-Duglas Function

$Y = K^{\alpha} L^{\beta} E^{\gamma}$

Mathematical notation

$$Y = X_1^{\varepsilon_1} X_2^{\varepsilon_2} X_3^{\varepsilon_3}$$

$$X = (X_1, X_2, X_3)$$

3D space

Л

$Y(0, X_2, X_3) = 0$

 $Y(X_1, 0, X_3) = 0$

 $Y\left(X_1, X_2, \mathbf{0}\right) = \mathbf{0}$

$Y = K^{\alpha} L^{\beta} E^{\gamma}$

$Y = \mathbf{0}^{\alpha} L^{\beta} E^{\gamma} = \mathbf{0}$

$Y = K^{\alpha} \mathbf{0}^{\beta} E^{\gamma} = \mathbf{0}$

$Y = K^{\alpha} L^{\beta} \mathbf{0}^{\gamma} = \mathbf{0}$

A production factor, not a destruction factor!

 $\frac{\partial Y}{\partial X_i} > 0$

 $\frac{\partial^2 Y}{\partial X_i^2} < 0$

 $\partial^2 Y$ $\overline{\partial X_i^2} < 0$

 $\partial^2 Y$ $\overline{\partial X_i^2} < 0$

 $\frac{\partial^2 Y}{\partial X_i^2} < 0$

 $\frac{\partial^2 Y}{\partial X_i^2} < 0$

Constant return to scale

$Y(\lambda X) = \lambda Y(X)$

$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1$

Substitutability has limits !

 $Y(0, X_2, X_3) = 0$

 $Y(X_1, 0, X_3) = 0$

 $Y(X_1, X_2, \mathbf{0}) = \mathbf{0}$

But it is meaningful in the neighbourhood of today's point

Logarithmic derivative

$$Y = X_1^{\varepsilon_1} X_2^{\varepsilon_2} X_3^{\varepsilon_3}$$

Output elasticity

$$\varepsilon_{i} = \frac{X_{i}}{Y} \frac{\partial Y}{\partial X_{i}}$$
$$\frac{\partial Y}{\partial Y}$$

$$\varepsilon_i = \frac{\frac{\partial T}{Y}}{\frac{\partial X_i}{X_i}}$$

Cost Share Theorem

« At the equilibrium, the output elasticity of a production factor is equal to its cost share »

Calculation of elasticity

- Y < GDP
- K < National accounting
- L < Ministry of Labour (Nb work hours)
- E < IEA (Primary energy consumption)

Cost and elasticity

Ok, Reiner, so what do we do with that ?

1) Energy is undervalued

Link between oil and economy

That's on purpose !

4) The solution : investment !! Elasticity Cost K 25% K 40% L 10% L 70% E 50% E 5%

4) The solution : investment !!

"We are moving from a OpEx to a CapEx world"

HSBC

Investment will be everywhere...

5) Question about capital remuneration Elasticity Cost K 25% K 40% L 10% L 70% E 50% E 5%

Toward the equilibrium ?

Rethink wealth distribution

6) Short / long term issue

"We have to solve climate and energy issues before the second half of the century"

> Jean-Noël Giraud (quoted by Patrick Criqui)

Decoupling will be a big challenge!

