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1. Energy and entropy
(a) Energy conversion and entropy production
(b) Emissions and climate change
(c) Exergy optimization and technology competition

2. Economy
(a) The capital, labor, energy, creativity (KLEC) model
(b) Economic growth and the economic weights of the
production factors

(c) Profit (and welfare) optimization subject to the
constraints overlooked by neoclassical economics

3. Summary, Conclusion, and Scenario Proposal

Details in: “The Second Law of Economics: Energy, Entropy, and the
Origins of Wealth”. Springer, New York, Dordrecht, Heidelberg,

London, 2011
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Energy: The fountain of life

Per second, the Sun converts 600 - 10° tons of hydrogen into

helium. Mass difference: Am = 4.2 - 10° tons. Solar
photoluminosity L = Amc?/s = 3.845 - 10°° W. Earth absorbs

1.2 - 101"W ~ 10* present world energy consumption.
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Growth of global energy consumption

Weltenergieverbrauch nach Energietragern
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18,5 Mrd. t SKE/ Jahr = 18.5 10° tCE/year = 1.72 10'3W
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Entropy S = kg In 2: Disorder

A monster 's there that always shows,
the more you work the more it grows.

X 3
~
ck AT
2!
O, i

P
3
What the he (_
is ENTROPY ? )
7%

S
%

Les Houches 2014 — p.5/51



Disorder: Example

5 .'T% 5t

One Many-body state of an ideal gas.

Postulate of equal a priori probabilities: An isolated system in
equilibrium can be found with equal probability in any one of its
accessible states ().
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Energy conversion and entropy production

® Nothing happens in the world
without energy conversion and entropy production.
First and Second Law of Thermodynamics
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Energy conversion and entropy production

® Nothing happens in the world
without energy conversion and entropy production.
First and Second Law of Thermodynamics

® First Law: Energy = Exergy + Anergy= const.
Exergy: valuable part of energy, convertible into useful work.
Anergy: useless; e.g. heat dumped into the environment.
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Energy conversion and entropy production

® Nothing happens in the world

without energy conversion and entropy production.
First and Second Law of Thermodynamics

First Law: Energy = Exergy + Anergy= const.
Exergy: valuable part of energy, convertible into useful work.
Anergy: useless; e.g. heat dumped into the environment.

Second Law: unavoidable entropy production

1) destroys exergy, enhances useless anergy — limits to
Improvements of energy efficiency!

2) results in polluting emissions of particles and heat:
entropy production density in a non-equilibrium system of N
different sorts of particles k:

05.0is(Fyt) = Sopey Te[=V(p/T) + fu/T) + 70V (1/T)> 0.

7, = particle current density, 7o = heat current density,

(ﬁ: gradient, T' = temperature, u= chemical potentials,

fr = external forces.)
Air pollution (Chinal!), climate change
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Global GHG emissions in 1990

Deutscher Bundestag — 11. Wahlperiode Drucksache 11/803(

Abb, 3: Lmachen ces Zusdtzichen Traibhausetekdes: Ganundets Anteils durch die Bersiche, die suver ariutert sind (vgl Tab, 1 und 2}
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Global GHG emissions in 2000

Figure 1 Greenhouse-gas emissions in 2000, by source
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Total emissions in 2000: 42 GtCO2e.

Energy emissions are mostly CO, (some non-CO, in industry and other energy related).
Mon-energy emissions are CO, (land use) and non-CO5 (agriculture and waste).

Source: Prepared by Stern Review, from data drawn from World Resources Institute Climate
Analysis Indicators Tool (CAIT) en-line database version 3.0.
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Fossil-fuel CO, emissions 1990-2010

32
Observed CO2 Emissions vs. IPCC Scenarios
y

30 == QObserved CO, emissions from fossil fuels (IEA)
—_ —B2
w
e
§ Al
« 28
% — ALT
=
S
'i:? — A2
5 26— — A1FI
-
g
w
S
@ 24
=
L
~
(@)
(]

22

F
20 I 1 T I | T | I T
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year

Source: http://www.skepticalscience.com/iea-co2-emissions-
update-2010.html
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German energy-related CQ emissions

1

Energiebedingte COs-Emissionen in Deutschland
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Emission mitigation

CO2-Emissionen
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Trendentwicklung Weltweit

e

Reduktionsziel Weltweit

EIEEE o
Reduktionsziel dar westlichen und ostlichen Industrielander
Begrenzung der Emissionen der Entwicklungslander

Proposal of the “Study Commission on Preventives Measures to Protect the Earth’s Atmosphere” of
the German Parliament to reduce the annual CO5 emissions, so that the concentration of CO5 will

not exceed 560 ppm (which is twice the pre-industrial concentration) and global temperature increase

will not exceed 2 centigrades.
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Variations of the average surface temperature of Earth during the last 10.000 years.
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Scenarios for exergy optimization

deeco
CHP, demand reduction, and renewable energies
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How the energy demand of “Wurzburg” could be satisfied optimally.
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hen physics began to matter in economics

Crude oil prices since 1861
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Development of the price of one barrel of crude oil from 1861 to 2011;
in 2011 US dollar prices (upper curve), and in dollar prices of the day
(lower curve) Source: http://en.wikipedia.org/wiki/Price_of_petroleum.
1973-1981: Oil price shocks. 1972: “The Limits to Growth”!
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The two levels of the economy

Legal Framework

Structure of the economy
Wealth is allocated on markets

Financial
Market Superstructure / transactions
‘ Trading of goods and
Price ! Signals SEIVICES
* Services
Productive physical basis
Industry

Energy conversion and entropy
production determine the growth
of wealth

Agriculture <~

O™
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Factors of the productive physical basis

[ENERGY CREATIVITY
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Engineering view, from “The Impact of Energy on Industrial Growth”,
Energy 7, 189-203 (1982).
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Output, factors and measuring units

9 Output Y (measured in constant currency): Gross

domestic product (GDP) or part thereof; created by work
performance and information processing.
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o Capital Stock K (measured in constant currency): Al
energy-conversion and information-processing devices and
the buildings and installations necessary for their protection
and operation.
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Output, factors and measuring units
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domestic product (GDP) or part thereof; created by work
performance and information processing.
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Output, factors and measuring units

o Output Y (measured in constant currency): Gross
domestic product (GDP) or part thereof; created by work
performance and information processing.

o Capital Stock K (measured in constant currency): Al
energy-conversion and information-processing devices and
the buildings and installations necessary for their protection
and operation.

o Labor L (measured in manhours worked per year):
manipulates the capital stock.

o Energy £ (measured, e.g., in Joules/year) activates the
capital stock.

o Creativity C: human ideas, inventions and value

decisions that affect the output.
Assumption: Space, which accomodates production sites,
contains resources, and absorbs emissions, stays constant.

Les Houches 2014 — p.18/51



KLEC model

Output (value added) and inputs at time t, normalized to their
guantities Yy, Ky, Lo, Ey In the base year t:

y(t) =Y (t)/Y, (normalized output),

k(t) = K(t)/Ky (normalized capital stock),
[(t) = L(t)/Ly (normalized labor),

e(t) = E(t)/E, (hormalized energy input).
Creativity causes an explicit time dependence of the

production function y = y(k, [, e;1),
which is assumed to be a state function of the economic system

(has same mathematical properties as thermodynamic state
functions).
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Growth equation

No limits to growth in the past.

Infinitesimal changes of output, dy, capital, dk, labor, de and
time, dt are related to each other by the growth equation
(which is obtained from the total differential of the production
function):

dy dk dl de dt
et A g = S
Y ak_i_ﬁl—l_ve—'_t—to

The output elasticities

Oz(/{:,l,e)zﬁ@ ﬁ(k,l,€>5£a— 7(k7l76)53@ 5 t—togy

-y Ok’ y Ol’ y Oe’ y Ot

give the weights, with which relative changes of the production
factors k, [, e and of time time ¢t contribute to the relative change
of output. In this sense they measure the productive powers of
capital, labor, energy, and creativity.
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Diff. equations for output elasticities

Production functions must be twice differentiable and linearly
homogeneous in k, [ and e at any fixed time ¢ —
constant returns to scale, i.e.a+ g+~ =1, and

oJe) o6 o
k% lﬁ e% = 0,
0808 08
81{: 8[ “oe ’
o _ 0
Ol 8k

The most general solutions of these equations are:

_ Ak ek), = /é%—?dk J/e)
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Output elasticities

Special solutions of the three coupled differential equations
(applying Occam’s razor):
® Trivial solutions: constants «g, 89,70 =1 — a9 — Op .

® Simplest non-trivial solutions, satisfying asymptotic
technical-economic boundary conditions:

_ l+e

&= a7

(Law of diminishing returns: o — 0, if (I +¢)/k — 0),
N

B =alcg — %)

(Substitution of capital and energy for labor as automation
increases: 3 — 0, if k — k,, and e — ck,,,),

y=1l-a—-p

(At a given point in time the weights with which capital, labor and
energy contribute to the growth of output add up to 100 % ).

Energy-dependent-CES and nested-CES-function output elasticities
are solutions, too.
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Production functions

Insert the output elasticities into the growth equation and
Integrate.
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Production functions

Insert the output elasticities into the growth equation and
Integrate.

The constants «g, 5p, Yo Yield the energy-dependent

Cobb-Douglas production function yopg = yok®1P0e0,
Neoclassical cost-share weighting:
ag ~ 0.25, [p =~ 0.70, ~p = 0.05— Solow residual.
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Production functions

Insert the output elasticities into the growth equation and
Integrate.

The constants «g, 5p, Yo Yield the energy-dependent

Cobb-Douglas production function yopgr = yok®01P0e0.
Neoclassical cost-share weighting:
ag ~ 0.25, [p =~ 0.70, ~p = 0.05— Solow residual.

The simplest non-trivial output elasticities yield the
time-dependent LinEx production function:

[+ e [

yr+(t) = yoeexp |a(t)(2 — k )+ a(t)c(t)(g —1)

a(t) = capital-effectiveness parameter, c¢(¢) = energy-demand
parameter, modeled by logistics or taylor series, determined by
nonlinear (Levenberg-Marquardt) OLS fitting of yr(¢) to
Yempirical (t), SUbject to the constraints: o > 0,3 > 0,7 > 0.
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Germany, Total Economy

6.0 Production Factors, FRG Total Economy Output, FRG, Total Economy
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Left: Empirical time series of capital, labor, and energy.
Right: Growth of output; black: empirical, red: computed with
LinEx function.
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Germany, Warenprod. Gewerbe

Production Factors, FRG, Industries Output FRG Industrles
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Left: Empirical time series of capital, labor, and energy.
Right: Growth of output; black: empirical, red: computed with
LinEXx function.
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Japan, Industries =~ Total Economy

Productlon Factors Japan Industrles Output, Japan, Industries
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Left: Empirical time series of capital, labor, and energy.
Right: Growth of output; black: empirical, red: computed with
LinEXx function.
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USA, Total Economy

Production Factors, USA, Total Economy Output USA, Total Economy
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Left: Empirical time series of capital, labor, and energy.
Right: Growth of output; black: empirical, red: computed with
LinEXx function.
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Output elasticities

Time-averaged output elasticities (productive powers) of
capital (@), labor (3), energy (7), and creativity (9)

FR of Germany, Total Economy, 1960-2000 (R? > 0.999, Dy = 1.64):
& = 0.38(£0.09), 3 = 0.15(£0.05), ¥ = 0.47(%0.1), § = 0.19(=£0.2).

FR of Germany, Industries, 1960-1999 (R? = 0.996, Dy = 1.90):

a = 0.37(%£0.09), 3 = 0.11(£0.07), ¥ = 0.52(£0.09), 6 = 0.12*(40.13).
Japan, Industries, 1965-1992 (R? = 0.999, Dy = 1.71):

a = 0.18(2£0.07), 3 = 0.09(£0.09), ¥ = 0.73(£0.16), 6 = 0.14(=£0.19).
USA, Total Economy, 1960-1996 (R? = 0.999, Dy, = 1.46)

& = 0.51(40.15), § = 0.14(+0.14), 7 = 0.35(%0.11), § = 0.10(£0.17).

Ayres/Warr, LInEx with exergy data USA, 1900-1998:
a = 0.27, B =0.09, ~ = 0.64.

Factor cost shares (OECD average) are for
capital: 0.25, labor: 0.70, energy: 0.05
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Productive powers: Germany
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Time-averaged output elasticities (productive powers) in the total economy of the Federal Republic of
Germany (top) and in Germany’s industrial sector “Warenproduzierendes Gewerbe” (bottom)
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Productive powers: Japan

~lJapan Industries
1965 - 1992

Capital Labor  Energy Creativity

Time-averaged output elasticities in the Japanese sector
“Industries”, which produces about 90% of Japanese GDP.
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Productive powers: USA
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50% CJUSA, Total Economy
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Time-averaged output elasticities in the total US economy.
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Optimization and cost share theorem

N factors of production X; ... X;... Xy, subject to constraints labeled
by a and described by f,(X:... X;... Xn,t) = 0.

Optimization of profit (or time-integrated utility) yields N equilibrium
conditions for the X;:

€ = X; oY __ X;|pi+si] 5, = — Mo Ofa
Y 09X, SN Xi[pitsi] L @ p OXi

¢; = output elasticity (OE) of Faktor X;, p,= market price of unit of X;
s; = shadow price of X;. u,/u = quotients of Lagrange multipliers,
depend upon OE. — Output elasticities are not equal to factor cost
shares.

N = 3 : X; =capital K, X, =labor L, X3 =energy FE.

Technological constraints on factor combinations: 1) degree of capacity
utilization n < 1; ii) degree of automation < pp(t) < 1.

Binding, IFF the state of the economy were exclusively determined
by profit maximization — a) At least one component of s; = 0, b) less
than 3 independent factors. Non-binding, if the real-world state of the
economy is NOT exclusively determined by profit maximization —

a) equilibrium conditions don’t apply, b) 3 independent factors.
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Non-equilibrium path: Example
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Shadow price barrier (squares, from n = 1) and neg. cost gradients
along the path of Germany’s industrial sector in the cost mountain

between 1960 and 1989, projected onto the % — 7 plane.
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Path along wall of Chinon fortress

Medreval armies in search of booty mrght have preferred movrng to and
looting the city instead of attacking the fortress wall.
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Summary and Conclusion

® [n modern economies, energy is a powerful factor of
production. We owe a substantial part of our material wealth
to energy conversion in the furnaces, heat engines and

transistors of the capital stock.

Les Houches 2014 — p.35/51



Summary and Conclusion

® [n modern economies, energy is a powerful factor of
production. We owe a substantial part of our material wealth
to energy conversion in the furnaces, heat engines and
transistors of the capital stock.

® Inevitably, energy conversion is coupled to entropy
production, which, in turn, results in energy depreciation and
emissions.

Les Houches 2014 — p.35/51



Summary and Conclusion

® [n modern economies, energy is a powerful factor of
production. We owe a substantial part of our material wealth
to energy conversion in the furnaces, heat engines and
transistors of the capital stock.
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Summary and Conclusion

® [n modern economies, energy is a powerful factor of
production. We owe a substantial part of our material wealth
to energy conversion in the furnaces, heat engines and
transistors of the capital stock.

® Inevitably, energy conversion is coupled to entropy
production, which, in turn, results in energy depreciation and
emissions.

® Energy is cheap and has a high productive power. Labor is
expensive and has a low productive power. This results in
the pressure to increase automation, substituting cheap
energy/capital combinations for expensive labor. It also
reinforces the trend towards globalization, because goods
and services produced in low-wage countries can be
transported cheaply to high-wage countries.

® These facts should shape the instruments in the scenario
toolbox.
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Proposal for scenario design

Fossil fuels satisfy roughly 80% (mineral oil 33%) of present world
energy demand (1.72-1017 W).

® Build a three-sector model of the economy’s physical basis,
consisting of 1) Agriculture, 2) Services, including transportation,
3) Industries.

® Describe the outputs of 1), 2), and 3) by appropriate
time-dependent, twice-differentiable production functions in
capital, labor, and energy.

® Estimate all output elasticities econometrically. Model their
response to future energy price increases in scenarios of A)
(sudden) resource scarcities and, alternatively, B) ecological tax
reforms that shift the burden of taxes and levies from labor to
energy. Model the coupling between the outputs of 1), 2) and 3).
Model the interdependence of economic growth, employment and
pollution.

® Compute the scenarios. Include options where nuclear and
renewably generated electricity, hydrogen or methane substitute
for fossil fuels
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Policy consequence

In order to fight increasing unemployment (and state indebtedness)
and stimulate energy conservation and emission mitigation the
disequilibrium between the productive powers and cost shares of labor
and energy should be reduced by:

® shifting the burden of taxes and levies from labor to energy so that
these factors’ cost shares come closer to the factors’ productive
powers; — tax and levy shares:
labor 10-20%, capital 30-40%, energy 40-50%.

® Increase of tax per energy unit according to progress in energy
conservation in order to keep revenues constant.

® Border tax adjustments according to the energy required for
production and transportation of the border-crossing goods
prevent competitive disadvantages in relation to not-energy-taxing
countries.

No recessions like that due to oil price shocks: the wealth created by
energy is not transferred abroad but only redistributed within the
country. BBC World Service Poll (2007): People will accept higher
energy taxes, if the total tax bill stayed the same.
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The German “Energiewende”

® Before March 2011 (Fukushima catastrophe) Germany
decided to extend the operation time of German nuclear
power plants (NPP)
by 8 years for the 7 plants built before 1980 and by 14 years
for the remaining 10 NPP: (LZV = nuclear extension) .

® After March 2011 Germany opted for
the immediate shut-down of 8 NPP and phase-out of the
remaining 9 until 2022: (Ausstieg= nuclear exit).

® November 2012, Minister of Environmental Affairs Peter
Altmeler: “The German energy U-turn is nothing but surgery

on the open heart of the economy”.
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Risks of nuclear accidents

® The German goverment justified its energy U-turn (before
Important state elections) by the allegedly underestimated
residual risk of nuclear power plants (NPP), as shown by the
Fukushima accident.

® No underestimated residual risk materialized in Fukushima
but rather a well-known, accepted risk due to insufficient

design of the NPP against earthquakes and tsunamis. In
Germany, a catastrophic process as in Fukushima is as

likely as the destruction of the emergency generators of

German NPP by a tsunami.

® A catastropic process, as it occurred in Chernobyl on April
26, 1986 in the graphite-moderated RBMK reactor with
positive void coefficient, cannot occur in German
water-moderated nuclear reactors with negative void
coefficients. This is guaranteed by physics.

® The likelihood of a core meltdown in a German NPP is
estimated to be one in one million years of reactor operation.
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Electricity generation: Government scenario

Aim: GHG emissions -40% by 2020, -80% by 2050. — energy
efficiency increase 2.3 -2.5% p.a.; renewables 36% in electricity
generation by 2020, > 50% of primary energy by 2050.
(Ausstieg= nuclear exit), (LZV = nuclear extension)
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German electricity generation 2011

Bruttostromerzeugung in Deutschland 2071 K
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German primary energy consumption 2011

Primarenergieverbrauch in Deutschland 2011
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Energy efficiency increase: phony

Entwicklung von Primérenergieverbrauch, Stromerzeugung und Energieeffizienz
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Renewable Energies

Advantage: Earth receives 1.2 - 107 Watts from Sun, and most of
solar entropy production goes into extraterrestrial space.

Problem: Low energy density of solar radiation — need for much
capital and land (space).

Hypothetically, Germany’s annual primary energy demand (4030
TWh in 2005) might be satisfied

a) by solar cells that cover an area of about 41.000 km~.
b) by biomass with energetic yields of 78,000 kWh/hectare

(intensive chinese farming) on an area of 517.000 km?.

Chancellor Angela Merkel in 2012:

“On our way Into the age of renewable energies we need highly
efficient coal and gas power plants during the transition time....

within the next ten years we must build additional power plants

with a safely available capacity of 10 GW.”
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Problem: fluctuations, EROI

® Fluctuations of sunshine and wind require stand-by gas
power plants. In makeshift operation these plants lose
money and may be taken off the grid.

® R&D in energy storage is necessary and expensive. Who
pays?

® High-voltage DC transmission lines must be built quickly.
This demands high investments and is much behind
schedule.

® Biomass is supposed to have the lion’s share of renewables
also in the future. But: biomass has the smallest EROI (< 3),
and its production may cause severe ecological and social
damages.
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State indebtedness: G7

Gross debt of G7-countries in the year 2009; in national
currencies and in percent of gross domestic product (GDP).

Canada CAD 1,191.29 billions  73%
France EUR 1,471.02 billions  80%
Germany EUR 1,853.87 billions  77%
Italia EUR 1,761.81 billions 115%
Japan JPY 1,047,730.45 billions 192%
UK GBP 962.927 billions  68%
USA US$ 12,093.10 billions  86%

Germany’s gross debt in 2011 exceeds 2000 billions Euro =
82% of GDP.
Constitutional brake on debt: From 2016 net borrowing of the

federal government is limited to 0.35% of GDP; same limit holds
for the states from 2020. Hope: Economic Growth
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Problem: life cycle emissions

Klimakiller Kohle
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per kWh.

Les Houches 2014 — p.48/51



Problem: the voters

13.11.2012 N. Dahmen, KFT

Les Houches 2014 — p.49/51



Problem: NIMBY, Bavarian example

Windgeschwindigkeiten in Bayern
Mittlzre Jehreswerte in 140 m Hihe ibser Grund

<10 1.5 20 25 3.0 36 40 4k 50 55 60 &5 70 75 80 85 90 85 100 mfs

Wind speeds in 140 m above ground. People in Upper Bavaria say:
“Don’t spoil our beautiful landscape by wind turbines”
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Conclusion: No easy “Energiewende”

® The sudden U-turn of German energy policy in 2011 was
done without identifying a path of sustainable development
viable for Germany. The risk is that — once such a path is
conceived — the German public might not be willing to
accept the required changes in personal life style and the
legal framework of the market. This carries the risk that

Germany will enhance its CO, emissions and/or state
Idebtedness.
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® |[f Germans really change their behavior, the opportunity is
that Germany will have the competitive advantage of a
leader in sustainable energy systems.
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Conclusion: No easy “Energiewende”

® The sudden U-turn of German energy policy in 2011 was
done without identifying a path of sustainable development
viable for Germany. The risk is that — once such a path is
conceived — the German public might not be willing to
accept the required changes in personal life style and the
legal framework of the market. This carries the risk that
Germany will enhance its CO, emissions and/or state
idebtedness.

® |[f Germans really change their behavior, the opportunity is
that Germany will have the competitive advantage of a
leader in sustainable energy systems.

® |f Germans fail to live up to their ambitious ecological and

economic aims, the rest of the world will have the
opportunity of learning from our mistakes.
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